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ABSTRACT

The generation of time series has increasingly wide applications in many fields,
such as electricity and transportation. Generating realistic multivariate long time
series is a crucial step towards making time series generation models practical,
with the challenge being the balance between long-term dependencies and short-
term feature learning. Towards this end, we propose a novel time series genera-
tion model named Compressed Patch Denoising Diffusion-model (CPDD). Con-
cretely, CPDD first employs the Time-series Patch Compressed (TPC) module
based on the patch mode decomposition method to obtain the latent encoding
of multi-scale feature fusion. Subsequently, it utilizes a diffusion-based model
to learn the latent distribution and decode the resulting samples, thereby achiev-
ing high-quality multivariate long-time series generation. Through extensive ex-
periments, results show that CPDD achieves state-of-the-art performance in the
generation task of multivariate long-time series. Furthermore, TPC also exhibits
remarkable efficiency in terms of robustness and generalization in time series re-
construction.

1 INTRODUCTION

The analysis of long-term time series data is of paramount importance in many real-world applica-
tions (Zhou et al. (2022); Wu et al. (2021); Zhou et al. (2021); Wang et al. (2023)). For instance,
in power load forecasting, longer historical data spanning months or even years is crucial for cap-
turing seasonal patterns and long-term trends, enabling more accurate predictions of future energy
demand. However, the increasing complexity and volume of time series data, particularly in sce-
narios involving long sequences and multiple variables, present significant challenges for analysis
and modeling. These challenges are further exacerbated by limited access to high-quality, diverse
datasets, especially when data sharing is restricted due to privacy concerns or proprietary reasons.

Time series generation has emerged as a promising solution to address these issues. By artifi-
cially creating realistic and diverse time-series data, researchers and practitioners can overcome
data scarcity and privacy constraints. Generating long time series presents its own set of difficul-
ties, including maintaining temporal consistency, capturing complex long-term dependencies and
short-term features, and ensuring the generated data accurately reflects the statistical properties of
real-world time series.

To address the challenges of time series generation, various deep learning approaches have been
proposed in recent years. These approaches aim to create synthetic time series data that closely
resemble real-world data in terms of statistical properties and temporal dynamics. Some notable
approaches include TimeGAN (Yoon et al. (2019)), TimeVAE (Abhyuday Desai & Beaver (2021)),
and Diffusion-TS (Yuan & Qiao (2024)). TimeGAN leverages the Generative Adversarial Networks
(GANs) framework (Goodfellow et al. (2014)) and introduces the supervised loss in training to
improve the generation quality. TimeVAE utilizes variational auto-encoders to capture and repro-
duce the underlying distribution of time series data using the trend-season decomposition technique.
More recently, diffusion-based models such as Diffusion-TS have shown promising results in gen-
erating high-quality time series data. However, these existing approaches face several challenges
when it comes to generating multivariate long-term time series: 1) Cumulative errors: Recurrent
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Figure 1: The patches of time series are represented as latent vectors, where the proximity of the
vectors indicates the similarity between the patches. The time series will be reconstructed by decod-
ing the combined latent vectors.

Neural Networks(RNN-based) methods exhibit limited performance in capturing long-range depen-
dencies due to cumulative errors. 2) High computational demands: Transformer-based approaches
lead to quadratic memory complexity for sequence length, requiring substantial computational re-
sources in long-term time series generation. 3) Difficulty in capturing both long-term dependencies
and short-term features: As the length of time series and the number of variables increase, the short-
term features in time series will become increasingly complex due to additional seasonal changes,
cyclical changes, sudden events, and other short-term fluctuations. Simultaneously, this heightened
complexity may lead to long-term dependencies becoming more prominent and intricate. These
challenges pose difficulties for current approaches in producing high-quality multivariate long-term
time series that accurately reflect the complex temporal dynamics found in real-world scenarios.

One viable solution to the aforementioned issue is to employ a framework akin to the latent layer
diffusion model (Rombach et al. (2022)), necessitating techniques capable of effectively compress-
ing and characterizing multivariate long-term time series data. In this paper, we introduce a novel
multivariate long-term time series generative model named Compressed Patch Denoising Diffusion-
model (CPDD), which utilizes the mode functions decomposition technique to achieve cross-scale
features fusion for obtaining the integrated representation of long-term dependence and short-term
features. Concretely, We employ a Time-series Patch Compression (TPC) module of CPDD to de-
compose the patches into mode functions (Dragomiretskiy & Zosso (2014)), enabling a consistent
characterization of both long-term dependencies and short-term features through these mode func-
tions. In contrast to conventional time series representation approaches (Chowdhury et al. (2022);
Yue et al. (2022); Zheng & Zhang (2023)), the TPC module learns a versatile combination of mode
functions from patches to accommodate various patterns and achieve generalized compressed rep-
resentation of time series data. To learn the latent distribution of the TPC outputs, CPDD introduces
a trend-seasonal decomposition diffusion-based generative model (Ho et al. (2020)) which utilizes
a novel Convolutional Neural Networks (CNN-based) Backbone named Depthwise separable Star
Convolution (DSConv) block to capture complex nonlinear features and Transformer blocks to learn
the trend in time series.

The major contributions of this paper are as follows:

• We propose CPDD, a novel compression-based denoising diffusion generative model de-
signed for multivariate long-term time series. CPDD leverages a patch compression method
to capture complex long-term and short-term dependencies more effectively, ultimately
leading to the high-quality generation of multivariate long-term time series.

• We introduce the TPC module, which guides the model to learn the general mode functions
of the patches and then fits it by mode functions combination to obtain the generalized
time-compressed representation model, based on the patch mode decomposition technique.
The TPC module can achieve robust reconstruction under high noise levels on some unseen
time series data.

• We propose a novel CNN-based backbone network named DSConv block apply to adap-
tively learn the patch mode functions, which employs an element-wise multiplication oper-
ation akin to the kernel trick, integrating the Depthwise separable Convolution (DWConv)
(Howard (2017)) technique with the ConvFFN structure (Luo & Wang (2024)) to dynami-
cally learn the general mode functions.
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Figure 2: The design of the TPC module. Integrated Feature Convolution (If Conv) is the embedding
layer of the TPC module.

⊕
define as Element-wise addition. The decompose module employs a

Moving average decomposing technique.

• We utilize various time series datasets to assess CPDD, showcasing its state-of-the-art per-
formance in generating multivariate long-term time series. Furthermore, we evaluate the
TPC module using various unseen datasets with noise levels of 30%, 50% in the task of
time series reconstruction. Experimental results demonstrate remarkable robustness and
generalization of the TPC module.

2 PROBLEM STATEMENT

Given a multivariate time series signal X1:τ ∈ Rτ×D, we split it into N patches denoted as
X1,X2, · · · ,XN , where each Xn ∈ R τ

N ×D represents a segment of the original signal. Our goal
is to decompose each patch into K adaptive modes:

Xn =

K∑
k=1

uk + resn,

uk(t) = Ak · ϕk,

(1)

where resn ∈ R τ
N ×D denotes irregular noise, uk ∈ R τ

N ×D is the k-th adaptive mode function of
the n-th patch, Ak ∈ R τ

N ×D is the amplitude function, and ϕk ∈ R τ
N ×D is the basis function.

To maximize the fit of each patch, dense spaces of uk are necessary. Our objective is for the model
to learn a dense representation space and extract a fitting combination of modes to reconstruct the
original patch, as depicted in Figure 1. This approach enables us to capture complex temporal
patterns and interactions within the data.

Following the model representation, we acquire the latent distribution of the original data. By em-
ploying the diffusion method to model this latent distribution, we can accomplish time series gener-
ation.

3 CPDD: A COMPRESSION-BASED DIFFUSION MODEL FOR TIME
SERIES GRENERATION

A widely adopted approach for handling multivariate long-term time series is to first compress its
high-dimensional structure, followed by leveraging a generative model to capture its latent distri-
bution. Existing approaches for achieving effective compressed representations include TCN-AE,
VAE, and MAE (Wang et al. (2023); C. Zhang & Wu (2022); Zheng & Zhang (2023); Yue et al.
(2022); Nie et al. (2023); Zerveas et al. (2021)). However, TCN-AE is vulnerable to overfitting due
to its limited regularization, while VAE tends to generate overly smooth reconstructions owing to its
inherent KL-divergence regularization. Additionally, MAE, which utilizes the Transformer struc-
ture, may result in high-dimensional encodings, making it unsuitable for compact representations.
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(a) Depthwise separable Star Convolution 

Figure 3: The design of Depthwise separable Star Convolution block. L and C are sizes of temporal
and feature dimensions. DWConv and PWConv are short for depth-wise and point-wise convolution
(Howard (2017)). r1, r2 ∈ Z>0,

⊕
define as Element-wise addition,

⊗
define as Element-wise

multiplication. The output of the Single Channel Convolution will be broadcasted to match the
dimension of the ConvFNN1 output.

Consequently, we aim to design a time series compression model that achieves a dense latent space
and maintains robustness in generalization.

3.1 CPDD METHOD

CPDD is composed of the TPC module and a diffusion-based generative model, designed for ef-
ficient time series compression and reconstruction. The TPC module employs an encoder-decoder
framework and integrates hierarchical components for long-term, short-term, and residual process-
ing, which facilitate the learning of multi-scale temporal features and patch mode functions. The
diffusion generative model, built upon the Transformer architecture, aims to capture the distribution
of compressed representations more effectively.

3.2 TIME-SERIES PATCH COMPRESSION MODULE

The TPC module is composed of the DSConv block and the Transformer block components, as
shown in Figure 2 and Figure 3. The DSConv block is employed to handle short-term and residual
features due to its advanced complex nonlinear modeling capabilities, while the Transformer block
is used to deal with long-term dependencies.

Multi-scale Feature Extraction. Several studies, such as ModernTCN (Luo & Wang (2024)), have
demonstrated that CNNs can significantly improve temporal feature extraction in time series mod-
eling by expanding the receptive field. To construct a comprehensive initial representation of time
series data, we combine linear layers, dilated convolutions, and patch embedding layers (C. Zhang
& Wu (2022); Zheng & Zhang (2023)) to form the embedding module, referred to as Integrated
Feature Convolution (If Conv). This module is specifically designed to capture multi-scale features
by effectively converting patches into representative tokens.

Adaptive mode Function Learning. To achieve adaptive learning of mode functions, we aim to de-
sign a model that learns a latent space where each point corresponds to a unique mode function, with
smoothly distributed representations for both long-term and short-term functions. This enables cap-
turing diverse morphological characteristics across different time scales. We propose the DSConv
block, which incorporates structural regularization to support this adaptive learning. In the following
subsections, we first describe the components of DSConv and then provide a detailed formal proof
of the effectiveness of its structural regularization.

As illustrated in Figure 3, the DSConv block integrates a modified StarNet structure (Ma et al.
(2024)) with three core components: DWConv, Single Channel Convolution, and two ConvFFN
modules. Concretely, the DWConv is responsible for learning temporal multi-scale information.
The Single Channel Conv aggregates information across channels to capture global dependen-
cies. The ConvFFN modules, analogous to the Feed-Forward Networks (FFN) in Transformers,
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utilize convolution operations for feature transformation. ConvFFN1 employs an inverted bottle-
neck structure with two pointwise convolutions, which enables it to concentrate on a narrow field
of view, facilitating the acquisition of general short-term feature information. ConvFFN2 utilizes an
information-constrained bottleneck structure to emphasize the interdependence among neighboring
tokens. Utilizing the star operation of StarNet, the DSConv block effectively fuses scale features,
general mode features, and local dependencies into a unified representation. This operation enables
multi-scale feature interaction and hierarchical representation learning, while preserving computa-
tional efficiency and enhancing the robustness of feature extraction across different temporal scales.

From the mathematical analysis, the star operation can be rewritten as follows:

(W1X+ b1) · (W2X+ b2)

=

(
G∑

g=1

C∑
c=1

wg,c
1 xt+g−1,c + b1

)
·

(
G∑

g=1

C∑
c=1

wg,c
2 xt+g−1,c + b2

)

=

G∑
g1=1

C∑
c1=1

G∑
g2=1

C∑
c2=1

αg1,c1,g2,c2xt+g1−1,c1xt+g2−1,c2

+

G∑
g=1

C∑
c=1

βg,cxt+g−1,c + γ,

αg1,c1,g2,c2 = wg1,c1
1 wg2,c2

2 , βg,c = wg,c
1 b2 + wg,c

2 b1, γ = b1b2,

(2)

where G ∈ N+ represents the kernel size of the convolution and g is the index. C ∈ N+ denotes
the number of input channels. xt,c ∈ R1 is the value at position t of channel c in the input sequence
X. wg,c

1 , wg,c
2 ∈ R1 are elements of the convolution kernels W1 and W2, respectively. b1, b2 ∈ R1

are scalar bias terms. αg1,c1,g2,c2 , βg,c, γ ∈ R1 are the transformed coefficients that encapsulate
information from the original convolution kernels and biases. By expressing the operation in this
form, we can observe how the input dimensions interact quadratically and intuitively, and we can
find that DSConv is more complex than the general additive convolution operation. Let’s consider
the role of the DSConv block at a more abstract level. The l-th layer of DSConv blocks can be
concisely described as follows:

h(l+1) = (Wl
1h

(l))⊗ (Wl
2h

(l)),

= (Al ⊗ ϕl),
(3)

where h(l) =

[
Xl

1

]
is the hidden representation at layer l, Wl

1 =

[
Wl

1

bl
1

]
and Wl

2 =

[
Wl

2

bl
2

]
are learnable weight matrices, ⊗ denotes element-wise multiplication. The next layer can be de-
scribed as:

h(l+2) = (Wl+1
1 h(l+1))⊗ (Wl+1

2 h(l+1)),

= (Wl+1
1 ((Wl

1h
(l))⊗ (Wl

2h
(l))))⊗ (Wl+1

2 ((Wl
1h

(l))⊗ (Wl
2h

(l)))),

= (Wl+1
1 ((Al ⊗ ϕl))⊗ (Wl+1

2 ((Al ⊗ ϕl)),

= (Al+1 ⊗ ϕl+1).

(4)

Through iterative layer-by-layer processes, we can formalize the final equation as follows:

h(L) = (AL−1 ⊗ ϕL−1). (5)

Based on the iterative Equations (3)-(5) provided above, DSConv blocks can be approximated as the
product of the magnitude function and the basis function, which the channel dimension is equivalent
to 2L-exponent of C/20.5 (Ma et al. (2024)).

Training Objectives. We employ the L2 loss as the reconstruction loss to train the TPC model. The
loss function is defined as:

Lrecon = ||X − X̂||2. (6)

5
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3.3 DIFFUSION GENERATIVE MODEL

As shown in Figure 4, We utilize the time-series trend-seasonal decomposition diffusion generative
model as the generative module of CPDD, which is inspired by the Diffusion-TS model (Yuan &
Qiao (2024)). However, the distinction lies in its utilization of the DSconv module, which replaces
the functionality of the seasonal module that operates in parallel with the FFN. This allows for par-
allel computation with the entire Transformer decoder, thereby more effectively capturing complex
temporal dynamics.

The diffusion model consists of two main components: a forward process and a reverse process. In
the forward process, starting from an initial sample z0 ∼ q(z), Gaussian noise is gradually added
over T steps, transforming it into a noise distribution zT ∼ N (0, I). This process is defined as:

q(zt|zt−1) = N (zt;
√
1− βtzt−1, βtI), (7)

where βt determines the noise level at each diffusion step t. The reverse process, modeled by pθ,
aims to reconstruct the original sample by estimating:

pθ(zt−1|zt) = N (zt−1;µθ(zt, t),Σθ(zt, t)). (8)

The loss function minimizes the gap between the true posterior mean µ(zt, z0) and the predicted
mean µθ(zt, t):

L(θ) =
T∑

t=1

Eq(zt|z0)

[
∥µ(zt, z0)− µθ(zt, t)∥2

]
. (9)

Trend block. The trend component in this model aims to capture the underlying smooth trajectory of
the data, representing gradual, long-term changes. We use the polynomial-based trend architecture
(Boris N. Oreshkin & Bengio (2020)) to model the trend component V n

tr . The formulation is as
follows:

V t
tr =

L∑
l=1

(F · Linear(ot,ltr ) + µt,l
tr ), (10)

where, µt,l
tr represents the mean value of the output from the l-th decoder block, F = [1, f, · · · , fp]

denotes the slow-varying poly space, f = [0, 1, 2, · · · , n−2, n−1]N/n], and ot,ltr is the input of the
l-th decoder block. The polynomial degree p is intentionally kept low (typically p ≤ 3) to ensure
the model captures only gradual, low-frequency variations in the data.

Seasonal & Residual block. To fit components other than the trend, we try to utilize the previously
mentioned DSConv block to learn the intricate non-linear features. After compression, both seasonal
and residual irregular features become more pronounced and distinguishable within the dense latent
distribution, making them easier to learn and capture. We view the model capturing Seasonal &
Residual component process as the mode function learning process with the patch size 1 as follows:

ut,l
n = DSConvl(o

t,l
ds,n)

= At,l
n · ϕt,l

n ,
(11)

where ut,l
n is mode function of the n-th patch in the l-th decoder block, ot,lds,n denotes the n-th patch

of the the l-th decoder block input. Combining the trends with each patch eventually, we obtain the
original latent variables as follows:

ẑ(zt, t, θ) = V t
tr +

[
L∑

l=1

ut,l
1 ,

L∑
l=1

ut,l
2 , · · · ,

L∑
l=1

ut,l
N

]
+ res. (12)

Training Objectives. We train the generative model to directly predict and estimate the latent
variable ẑ0(zt, t, θ) of the original time series. The reverse process of our diffusion model is approx-
imated using the Equation (13):

zt−1 =

√
ᾱt−1βt

1− ᾱt
ẑ0(zt, t, θ) +

√
αt(1− ᾱt−1)

1− αt
zt +

1− ᾱt−1

1− ᾱt
βtεt, (13)
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Figure 4: The detailed construction of the decoder in the diffusion-based generative model. Z: La-
tent representation obtained from the TPC Encoder during training. Zt: Time-step latent variable
used in the intermediate stages of the diffusion process. Z ′: Latent sample generated by the diffu-
sion model for reconstruction. Ẑ0: Final denoised latent representation after the reverse diffusion
process.

where εt ∼ N (0, 1), αt = 1 − βt, and ᾱt =
∏t

s=1 αs. We employ a reweighting strategy for the
loss function,

Lsimple = Et,z0

[
wt|z0 − ẑ0(zt, t, θ)|2

]
, wt =

λαt(1− ᾱt)

β2
t

, (14)

where λ is a constant, typically set to 0.01. Due to the reconstruction error present in the TPC
module, it is essential to incorporate the Mean Squared Error (MSE) between the original time
series X and the decoded prediction time series X̂ as an extra loss term to aid in the convergence of
the generative module.

Lfinetun = ||X − X̂||2. (15)

To encourage the model to capture the temporal dependencies present in the data, we introduce an
autocorrelation loss term. This loss penalizes the difference between the autocorrelation function of
the generated sequences and the target autocorrelation structure. Formally, we define the autocorre-
lation loss as:

LACF =

M∑
m=1

w(m)|r̂(m)− r(m)|p, (16)

where r̂(m) is the sample autocorrelation function of the model-generated sequence at lag m, r(m)
is the target autocorrelation function, w(m) is a weighting function that allows us to emphasize
certain lags and p is the norm parameter (typically 1 or 2). The summation is carried out up to
a maximum lag m, chosen based on the relevant time scales in our data. The total loss function
combines multiple objectives:

Ltotal = Lsimple + λACFLACF + λfinetunLfinetun. (17)
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4 EMPIRICAL EVALUATION

In this section, we present a comprehensive evaluation of the CPDD model. We compare CPDD
with the baseline generation models: Diffusion-TS, TimeGAN, and TimeVAE. Our experiments
are designed to validate the effectiveness of CPDD across various scenarios, including quality of
generation, component contributions, robustness, and generalization of reconstruction.

4.1 EXPERIMENTAL SETUP

Dataset. We evaluate our method using diverse datasets representing various aspects of time series
analysis: 1) Sines Dataset has 10 features where each feature is created with different frequencies
and phases independently. 2) Electricity Dataset contains hourly electricity consumption data from
370 clients in New South Wales, Australia, spanning from 1996 to 1998, and is commonly used for
time series forecasting and detecting anomalies in power usage patterns. We limit the training data
for the electricity dataset to only the first 7 clients. 3) ETTh Dataset is the electricity Transformer
monitoring data comprised of multivariate time series data with 7 features recorded at 15-minute
intervals spanning from July 2016 to July 2018, encompassing load and oil temperature metrics.
4) Energy Dataset is from the UCI appliance energy prediction suite, comprising 28 variables for
energy consumption pattern analysis.

Metrics. We employ the Discriminative Score to evaluate the realism of synthetic data by distin-
guishing it from real samples, and the Predictive Score to measure its predictive value by training
on synthetic data and testing on real data (Yoon et al. (2019)).

4.2 GENERATION EXPERIMENTS

In this subsection, we evaluate the performance of CPDD in time series generation tasks, comparing
it with other baselines across various datasets.

Table 1: Results on Multiple Time-Series Datasets (Bold indicates best performance).
Metric Methods Sines Electricity ETTh Energy

Discriminative
Score

(Lower the Better)

CPDD (ours) 0.272±0.175 0.355±0.112 0.352±0.082 0.488±0.004
Diffusion-TS ( Yuan & Qiao (2024)) 0.495±0.003 0.497±0.002 0.492±0.007 0.499±0.001

TimeGAN ( Yoon et al. (2019)) 0.499±0.001 0.487±0.012 0.488±0.011 0.499±0.001
TimeVAE ( Abhyuday Desai & Beaver (2021)) 0.483±0.016 0.360±0.082 0.360±0.081 0.499±0.001

Predictive
Score

(Lower the Better)

CPDD (ours) 0.326±0.001 0.625±0.028 0.751±0.021 0.976±0.008
Diffusion-TS ( Yuan & Qiao (2024)) 0.311±0.002 0.803±0.072 1.287±0.023 0.995±0.001

TimeGAN ( Yoon et al. (2019)) 0.352±0.004 0.708±0.037 0.922±0.038 0.926±0.002
TimeVAE ( Abhyuday Desai & Beaver (2021)) 0.348±0.018 0.597±0.015 0.762±0.023 0.927±0.001

Original 0.311±0.001 0.548±0.001 0.784±0.008 0.825±0.009

Figure 5: Visualizations of the time series synthesized by Diffusion-TS and CPDD (Blue for syn-
thetic data, red for raw data).
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Results and Analysis. Table 1 displays the comparative results of generating 1024-length time se-
ries data using CPDD and baseline models. The test results indicate that CPDD outperforms other
models on the majority of the datasets. The performance gap is more pronounced in the Discrim-
inative score at all datasets, highlighting the efficacy of CPDD in capturing temporal dynamics.
To assess the similarity between synthetic and real-time series data distributions, we employ two
complementary visualization approaches. We first use t-SNE (van der Maaten & Hinton (2008)) to
project original and synthetic data into a lower-dimensional space for visual comparison of cluster-
ing patterns. Then, we apply Kernel Density Estimation (KDE) to compare their probability density
functions, highlighting distributional similarity. From Figure 5, the visualization results show that
the time series synthesized by CPDD has better distribution coincidence than the other baselines,
demonstrating the effectiveness of our method in modeling long-term and short-term time series.
The comprehensive evaluation demonstrates the superior performance of CPDD in time series gen-
eration across various datasets.

4.3 ABLATION STUDIE

We compare the full versioned CPDD with its two variants to evaluate the effectiveness of our
method: (1) w/o DSConv, i.e. CPDD replaces the DSConv block with FFT-based block in the
diffusion-base generative model. (2) w/o Compress, i.e. CPDD without the TPC module. The
details of the results are shown in Table 2.

Table 2: Ablation study for model architecture and options. (Bold indicates best performance).
Metric Method Sines Electricity ETTh Energy

Discriminative
Score

(Lower the Better)

CPDD 0.272±0.175 0.355±0.112 0.352±0.082 0.488±0.004
w/o DSConv 0.352±0.133 0.496±0.003 0.497±0.001 0.495±0.004

w/o TPC 0.494±0.003 0.499±0.001 0.495±0.004 0.498±0.002

Predictive
Score

(Lower the Better)

CPDD 0.326±0.001 0.625±0.028 0.751±0.021 0.972±0.003
w/o DSConv 0.318±0.002 0.698±0.015 0.763±0.073 0.972±0.003

w/o TPC 0.333±0.001 0.786±0.012 1.039±0.083 0.953±0.011
Original 0.311±0.001 0.548±0.001 0.784±0.008 0.825±0.009

Results indicate that both the DSConv and the TPC module design contribute significantly to the
performance of the model. We find that removing either the TPC module or the DSConv compo-
nent results in a notable drop in performance, demonstrating their crucial roles. The TPC module
efficiently compresses both long- and short-term features, while the DSConv enhances multi-scale
feature interactions, together ensuring robust and high-quality time series generation.

4.4 ROBUSTNESS ANALYSIS

In this part, we test the reconstruction robustness of the TPC module. The validation model is only
trained by the training set of ETTh1, which means that all test sets of this experiment are unseen
for the validation model. As the feature dimensions in some datasets vary, we randomly select 7
dimensions for high-dimensional datasets and utilize cyclic padding to fill the gaps in datasets with
less than 7 dimensions. We add varying levels of noise to the input data, focusing on the performance
of the time series compression module to test the robustness of the model. From Table 3, the model
demonstrates excellent reconstruction ability on the majority of unseen datasets, showcasing its
strong generalization performance. Additionally, it maintains good reconstruction performance even
at noise levels of 30% and 50%, highlighting the robustness of the model in reconstruction tasks.

Table 3: Reconstruction performance under different noise levels. (The test value means the MSE)
Noise ETTh1(baseline) ETTh2 ETTm1 ETTm2 Electricity Exchange rate Traffic stock Energy Wheather

0% 0.0577 0.0337 0.0459 0.0198 0.0726 0.0541 0.182 0.0522 0.0668 0.0936
30% 0.078 0.0592 0.0812 0.0469 0.0937 0.0764 0.210 0.0731 0.0948 0.113
50% 0.116 0.105 0.145 0.0965 0.132 0.116 0.260 0.112 0.146 0.147
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5 CONCLUSSION

In this work, we introduce a novel approach for realistic multivariate long-time series generation
through a model named CPDD. CPDD effectively addresses the fundamental challenges of balanc-
ing long-term temporal dependencies and short-term feature representations by integrating the TPC
module and a diffusion-based generative model. The TPC module leverages adaptive patch mode de-
composition to capture and compress multi-scale temporal features, ensuring a robust and compact
latent encoding. The diffusion-based framework then models the latent distribution and synthesizes
high-quality long-time series data through an iterative denoising process. Extensive experiments
validate that CPDD not only achieves state-of-the-art performance in generating complex multivari-
ate long-term time series but also demonstrates remarkable generalization and robustness in various
time series reconstruction tasks. In future work, we will focus on enhancing the TPC module and
DSConv block to handle more complex temporal structures and explore their integration into hybrid
architectures for broader applicability across diverse domains.
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A APPENDIX

A.1 COMPUTATION COMPLEXITY

Table 4 presents the results of the training and sampling times in comparison to Disffusion-TS and
CPDD. Table 5 displays the corresponding hyperparameter settings for this experiment. Based on
both the actual experimental results and the theoretical computational complexity analysis, it is
evident that CPDD requires less time for training and sampling compared to Diffusion-TS. This
efficiency is attributed to the effective Time-series Patch Compression Encoder in CPDD, which
significantly reduces the length of input time series without adding excessive feature dimensions.

Table 4: Comparison of Training and Sampling Times for Diffusion-TS and CPDD
Dataset Model Training Time(min) Sample Time(min)

sines Diffusion-TS 146 65
CPDD 63 30

electricity Diffusion-TS 109 495
CPDD 92 65

Etth1 Diffusion-TS 181 111
CPDD 74 42

Energy Diffusion-TS 185 410
CPDD 128 38

Table 5: Comparison of Key Parameters between Diffusion-TS and CPDD
Parameter Diffusion-TS CPDD
Input Size 1024 1024
Channels 7 7
Dataset ETTh1 ETTh1
Number of samples 17,017 17,017
Encoder Layers 3 3
Decoder Layers 2 2
dmodel 64 64
TPC Encoder Layers - 1
TPC Decoder Layers - 1
TPC Encoder dmodel - 256
TPC Encoder Token Size - 64
TPC Decoder dmodel - 128
TPC Decoder Token Size - 64
Computational Complexity 272× 5× 643 (26 + 10)× 643

A.2 COMPARATIVE EXPERIMENTS ON PATCH SIZE

In Table 6, the comparative experimental results of the 1024th generation of the ETTh1 dataset under
various patch size conditions are presented, while Table 7 illustrates the corresponding hyperparam-
eter settings.

Table 6: Discriminative and Predictive Scores for ETTh1 with Different Patch Sizes
Patch Size Discriminative Score↓ Predictive Score↓

8 0.412 ± 0.037 0.696 ± 0.037
10 0.407 ± 0.042 0.732 ± 0.017

16(CPDD) 0.352 ± 0.082 0.751 ± 0.021

The experimental results indicate that as the patch size decreases, there is a gradual increase in the
Discriminative score while the Predictive score decreases gradually, which aligns with our theoreti-
cal assumption. Nevertheless, their performance remains superior to most baseline performances in
Table 1.
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Table 7: Parameter Configuration for Different Patch Sizes
Parameter
Patch size 8 10 16
Stride 6 8 16
Input Size L 1024 1024 1024
Channels 7 7 7
Diffusion Model Encoder Layers 1 3 3
Diffusion Model Decoder Layers 2 2 2
Diffusion Model Token length 128 103 64
Diffusion Model Feature dimension Dtz 64 64 64
DSConv of Diffusion Model Feature dimension Dsz 128 256 384
TPC Encoder Layers 1 1 1
TPC Decoder Layers 1 1 1
TPC Encoder Feature dimension Dte 128 256 256
TPC Encoder Token length 171 128 64
TPC Decoder Feature dimension Dtd 64 128 128
TPC Decoder Token length 171 128 64
TPC DSConv Feature dimension Ds 16 25 32
TPC DSConv Token Size 171 128 64

A.3 SUPPLEMENT TO THE EVALUATION METRICS

We add the Context-FID Score (Jeha et al. (2022)) and Correlational Score (Liao et al. (2020)) eval-
uation metrics to the Table 8 and Table 9. Context-FID involves extracting features of generated
and real sequences using a pre-trained embedding model and calculating the distribution difference
in the embedding space to measure the overall quality of the generated data. The Correlational
method compares the autocorrelation and cross-correlation distributions of generated data with real
data to assess whether it preserves the statistical structure and dependency patterns of the time se-
ries. Overall, CPDD demonstrates excellent generation performance, excelling in both Context-FID
and Correlational metrics, while also maintaining a good balance between Context consistency and
multivariate time series correlation.

Table 8: Context-FID Scores for Different Models Across Datasets (Lower is Better).
Model Sines Electricity ETTh1 Energy
CPDD 5.687 ± 0.252 5.996 ± 0.294 3.238 ± 0.421 1.151 ± 1.072

Diffusion-TS 13.451 ± 0.492 65.204 ± 1.853 20.568 ± 2.973 67.630 ± 7.732
TimeGAN 59.031 ± 2.223 18.365 ± 0.613 10.381 ± 1.227 61.022 ± 1.893
TimeVAE 106.981 ± 0.722 4.804 ± 0.436 3.362 ± 0.432 19.862 ± 0.038

Table 9: Correlational Scores for Different Models Across Datasets (Lower is Better).
Model Sines Electricity ETTh1 Energy
CPDD 0.329 ± 0.005 0.198 ± 0.001 0.247 ± 0.003 1.912 ± 0.001

Diffusion-TS 0.194 ± 0.003 0.213 ± 0.001 0.430 ± 0.008 7.271 ± 0.007
TimeGAN 1.392 ± 0.003 0.726 ± 0.002 1.811 ± 0.001 15.581 ± 0.003
TimeVAE 4.263 ± 0.001 0.086 ± 0.001 0.155 ± 0.004 2.484 ± 0.004

A.4 SUPPLEMENT TO ABLATION EXPERIMENTS

To better evaluate the contribution of each component of CPDD, we added two ablation experiments
in Table 10. Firstly, to assess the impact of patch embedding, we introduced tests with patch=1 in
the table for comparison with the original patch=16. Secondly, to evaluate the effectiveness of
the trend-seasonal decomposition method, we conducted individual tests for the trend and seasonal
components.
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Table 10: Discriminative and Predictive Scores for ETTh1 and Energy Datasets.
Dataset Method Discriminative Score↓ Predictive Score↓

ETTh1

Patch size = 1 0.499 ± 0.001 0.751 ± 0.011
Patch size = 16 (CPDD) 0.352 ± 0.082 0.751 ± 0.021
Trend-only 0.499 ± 0.001 0.792 ± 0.012
Season-only 0.499 ± 0.001 0.789 ± 0.014

Energy

Patch size = 1 0.499 ± 0.001 0.966 ± 0.001
Patch size = 16 (CPDD) 0.488 ± 0.004 0.972 ± 0.003
Trend-only 0.499 ± 0.001 0.988 ± 0.002
Season-only 0.499 ± 0.001 0.982 ± 0.004

The results shows that the CPDD method (Patch size = 16) achieves the best Discriminative Score
across both datasets and competitive Predictive Score, demonstrating its effectiveness in capturing
meaningful patterns.
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